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12 ABSTRACT 

13 Black carbon (BC) emissions from aircraft engines lead to an increase in the atmospheric burden 

14 of fine particulate matter (PM2.5). Exposure to PM2.5 from sources including aviation is associated 

15 with an increased risk of premature mortality, and BC suspended in the atmosphere has a warming 

16 impact on the climate. BC particles emitted from aircraft also serve as nuclei for contrail ice 

17 particles, which are a major component of aviation’s climate impact. In order to facilitate the 
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18 evaluation of these impacts, we have developed a method to estimate BC mass and number 

19 emissions at the engine exit plane, referred to as the Smoke Correlation for Particle Emissions – 

20 CAEP11 (SCOPE11). We use a dataset consisting of SN – BC mass concentration pairs, collected 

21 using certification-compliant measurement systems, to develop a new relationship between Smoke 

22 Number (SN) and BC mass concentration. In addition, we use a complementary dataset to estimate 

23 measurement system loss correction factors and particle geometric mean diameters to estimate BC 

24 number emissions at the engine exit plane. Using this method, we estimate global BC emissions 

25 from aircraft landing and takeoff (LTO) operations for 2015 to be 0.74 Gg/yr (95% CI: 0.64 – 

26 0.84) and 2.85 × 1025 particles/yr (95% CI: 1.86 – 4.49 × 1025). 

28 

29 INTRODUCTION 

30 Global commercial aviation activity is expected to grow by 1.5-4.1% annually between 2020 

31 and 2050 under a range of IPCC scenarios (1). The upper side of this range is consistent with 

32 industry projections that expect requiring almost double the fleet size by 2036 (2,3). Emissions 

33 from aircraft engines near airports can increase particulate matter (PM) and ozone (O3) 

34 concentrations (4,5). The inhalation of fine PM with an aerodynamic diameter below 2.5 m 

27 TOC ART 
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35 (PM2.5) by surrounding populations can lead to adverse health impacts and an increase in 

36 premature mortalities (6,7). 

37 While current epidemiological evidence is based on mass concentrations, increasing 

38 toxicological evidence points to the importance of number (or surface area) as a metric of 

39 importance (8). This is a particular concern for aviation engines due to their capacity to produce 

40 so-called “ultra-fine” particulate matter, with aerodynamic diameter below 100 nm (9–14). 

41 Emissions of these ultra-fine particles can lead to a significant increase in ambient particle number 

42 concentrations, with decreases in average particle size, leading to increased lung deposition 

43 fractions (15–18). The air quality and health impacts from aviation emissions have been quantified 

44 at scales spanning airport and regional level calculations (19–22) to national level estimates 

45 (5,23,24) to global aviation activity (4,25,26). Median estimates for premature mortalities 

46 attributable to all aviation emissions in 2006 vary between 9,000 (25) and 16,000 (4), which 

47 represents ≲ 2% of premature mortalities caused by outdoor air quality degradation due to 

48 anthropogenic emissions. BC emissions account for ~0.2% of this health impact due to full flight, 

49 global emissions (27). However, this result does not account for differences between fine and ultra-

50 fine PM, and the BC contribution may be higher at a regional level (5). In addition, BC particles 

51 emitted at cruise altitudes serve as ice nuclei to promote the formation of contrails. Contrails are 

52 considered to be one of the largest of aviation’s climate impacts (28,29) and have been found to 

53 be sensitive to BC number emissions (30,31). 

54 These concerns have led the International Civil Aviation Organization’s (ICAO) Committee for 

55 Aviation Environmental Protection (CAEP) to develop emissions standards for aircraft engines, 

56 which currently include limits on NOx, unburned hydrocarbons, and carbon monoxide emissions 

57 during a standard landing and takeoff (LTO) cycle (32). Aircraft engine black carbon (BC) 
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58 emissions have also been regulated indirectly through the Smoke Number (SN) standard adopted 

59 in 1981. 

60 The SN standard was developed to limit the visibility of the black soot from aircraft engine 

61 exhaust plumes. It is measured by capturing the BC in the exhaust stream on a filter and measuring 

62 its change in reflectance (33). While the SN is useful for estimating the visibility of the plume, it 

63 is not a suitable metric to quantify air quality impacts on human health. Advanced measurement 

64 systems have therefore been developed to measure BC emissions from aircraft engines. The 

65 systems have evolved over a series of engine measurement campaigns, including the Aircraft 

66 Particle Emissions Experiment (APEX) (34), the Aviation-Particulate Regulatory Instrumentation 

67 Demonstration Experiment (A-PRIDE) (9), and an additional study demonstrating the method for 

68 smaller engines (10). This work has culminated in an Aerospace Recommended Practice (ARP) 

69 that provides guidelines for the measurement of BC emissions (35). 

70 In addition to improvements in the measurement systems, reporting requirements and a mass 

71 concentration standard for engines produced after 1 January 2020 were established at the 10th 

72 meeting of CAEP. While this reporting requirement is useful for quantifying future emissions of 

73 BC mass and number, there remain a range of engines that are expected to continue active 

74 operation with no BC measurements available. For this reason, various correlations have been 

75 developed that relate SN with BC mass concentration, including the FOA3 method (36) and a 

76 correlation developed by Stettler et al. (37). These have been used as the basis of estimates for 

77 several air quality studies, however they can vary by a factor of 4 in estimating total global BC 

78 emissions (38). To the best of the authors’ knowledge, no relationships exist to predict BC number 

79 emissions from engine certification data, except for using simplified relationships that are 

80 extremely sensitive to the choice of a constant geometric mean diameter (GMDs). 
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81 In this paper, we use a dataset of simultaneous SN and mass concentration measurements to 

82 improve the estimation of aircraft engine BC mass concentration from SN data (dataset-1). While 

83 similar in form to the original dataset used to develop FOA3 (36), the measurements used here 

84 were taken using a standardized measurement system defined in ICAO Annex 16 Vol. II (32) and 

85 the SN and mass concentration measurements were acquired simultaneously. The FOA3 method 

86 was developed using certification SN data, with mass concentration measured independently using 

87 in-service engines. Thus, dataset-1 is expected to lead to a more reliable correlation than these 

88 previous studies. Despite the advancements in measurement systems, the long sampling lines 

89 required to transport the BC from engine exit to measurement devices lead to particle losses as, 

90 for example, particles are deposited on the walls of the sampling lines. These losses have been 

91 discussed in various measurement campaigns (11,34) and can be in excess of 50%, increasing as 

92 the geometric mean diameter (GMD) of particles decreases (39). Using a dataset of simultaneous 

93 BC mass and particle number emissions (dataset-2), we have developed a correlation to estimate 

94 mass system loss correction factors when only mass concentration data is available. Using this 

95 same dataset, we have developed a method to predict BC number emissions by assuming a 

96 lognormal size distribution and correlating the GMD with a function of measured mass 

97 concentration and the pressure at the combustor exit. These correlations and the method to convert 

98 them to total BC mass and number emissions is referred to as the Smoke COrrelation for Particle 

99 Emissions – CAEP11 (SCOPE11), and will be used by airports and ICAO-CAEP in developing 

100 international standards for the regulation of aircraft engine BC emissions. In addition, this work 

101 can be used by modelers to improve estimates for aviation BC emissions and evaluations of 

102 aviation’s environmental impact. 

103 
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104 MATERIALS AND METHODS 

105 SN to BC mass concentration correlation: We use a dataset of 1407 paired BC mass 

106 concentration (𝐶𝐵𝐶) and SN measurements referred to as dataset-1. These measurements were 

107 taken in order to support the CAEP process, and comprise measurements of 24 aircraft engine 

108 models from 6 manufacturers over a range of engine thrust settings. The SN and 𝐶𝐵𝐶 measurements 

109 were made using standardized measurement systems as defined in ICAO Annex 16 Vol. II (32) 

110 and the data represents measurements at the instrument (𝐶𝐵𝐶,𝑖), rather than at the engine exit plane 

111 (𝐶𝐵𝐶,𝑒), but does include corrections for thermophoretic losses (32,33). The measurement system 

112 involves three sections: collection, transfer and measurement. The collection of BC particles 

113 occurs through a single- or multi-point rake with sampling probes, after which the sample flows 

114 through a heated sample line. The sample is then transferred to a diluter to reduce further 

115 coagulation and thermophoretic losses, before being passed through a 1 m cyclone separator in 

116 order to remove large particles that are assumed not to be generated by combustion. Finally, BC 

117 mass measurements are made using either an AVL Micro Soot Sensor (MSS) or Laser Induced 

118 Incandescence (LII), and number measurements are made using an AVL Particle Counter (APC), 

119 which also requires a volatile particle remover (VPR) to condition the sample for non-volatile 

120 particle number measurements. Major sources of uncertainty are found in the measurement 

121 instruments, estimated to be ~25% for both mass and number, as well as errors due to temperature 

122 and pressure measurements, and errors due to dilution factor measurements (9). 

123 By using standardized, certification-compliant measurement systems, dataset-1 contains high 

124 quality measured data from a wide variety of engines, which has previously been unavailable. This 

125 data has been included in the Supplementary Information (SI) Document B, with additional 

126 information removed to respect proprietary concerns for each manufacturer. The measurement 
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127 points are shown inError! Reference source not found. Figure 1 (blue circles). We note that 

128 while the data has a general exponential trend for SN ≳ 5 (linear in semi-logarithmic axes), the 

129 behavior below this SN is not as clear. In the SN < 5 regime, there is significant spread in the data, 

130 such that at SN = 0, the 𝐶𝐵𝐶,𝑖 can vary by approximately 3 orders of magnitude. To help visualize 

131 the trends, we have separated the data into 25 distinct bins by range of SN and plotted the median 

132 mass concentration for each bin (orange, unfilled circles). The median set of data reveals an 

133 exponential trend for SN ≲ 5 that has a steeper gradient than that for higher SNs. 

134 To account for the observed shape and the changing trend between low and high SN, we 

135 develop a correlation using the product of an exponential function (governing the behavior for 

136 high SN) and a logistic function (governing the behavior for low SN): 

𝑘1𝑒𝑘2SN Eq 1 
=𝐶𝐵𝐶,𝑖 

1 + 𝑒𝑘3(SN+𝑘4) 

137 where 𝑘𝑖 are constants that are determined by a two-step nonlinear least-squares fit. In each step, 

138 the fit is carried out on the logarithm of 𝐶𝐵𝐶,𝑖 in order to produce a fit that is applicable across the 

139 full range of SNs. In the first step, the constants 𝑘1 and 𝑘2 are found by fitting the data for SN ≥ 

140 = 𝑘1𝑒𝑘2⋅SN5 to the exponential function 𝐶𝐵𝐶,𝑖 . In the second step, the full data set is fit to the 

141 combined equation, holding 𝑘1 and 𝑘2 constant, in order to find 𝑘3 and 𝑘4. 

142 To quantify the variability within the data, we also calculate prediction intervals. These are the 

143 intervals between which we have a specified probability (e.g. 90%) that a new concurrent SN 

144 and 𝐶𝐵𝐶,𝑖 measurement would lie. To determine these bounds, we hold 𝑘2 and 𝑘3 fixed. 𝑘1 is 

145 found using an optimization routine that uses the SN ≥ 5 data and ensures 5% of the data above 

146 and 5% of the data below the upper and lower bounding lines respectively. The same method is 

147 used to find 𝑘4, but using the data for SN ≤ 5. 
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148 System loss corrections: As with any sampling-based particle measurement, there are particle 

149 losses in the standardized measurement system which lead to differences between the BC 

150 emissions measured at the instruments versus those actually emitted from the engine at the exit 

151 plane. Losses occur due to changes in flow direction that cause particles to embed on internal 

152 surfaces. This loss can occur due to bends in the sampling lines and the lack of penetration of 

153 particles through individual components. The losses of particles in individual components can also 

154 be a function of size. For example, losses in the VPR are determined to be around 60% for particles 

155 with 15 nm aerodynamic diameter, and 30% at a diameter of 50 nm (10), consistent with trends 

156 from measurements for automotive vehicle emissions (40). These losses, referred to as system 

157 losses, have been found to reduce the measured mass of emissions by up to a factor of 2, while 

158 losses for number emissions can be greater than a factor of 50 (39). Losses depends on particle 

159 size due to device-specific penetration functions and the higher diffusion of smaller particles that 

160 can be absorbed on the line walls. These losses can be estimated by using a system loss calculator 

161 developed by SAE (39), which requires input on the exhaust gas temperature, sampling line lengths 

162 and temperatures, and measured values. 

163 Given that dataset-1 contains measurements at the instrument, we must correct for system 

164 losses to estimate emissions at the engine exit plane. Using a set of simultaneous BC mass and 

165 particle number data measured using the standard-compliant measurement systems (41) (dataset-

166 2) and corrected for differences in fuel hydrogen content, system loss correction factors for mass 

167 (𝑘𝑠𝑙𝑚) have been estimated using the SAE system loss calculator (39). We observe that the mean 

168 particle size, or the geometric mean diameter (GMD), tends to increase with increasing 

169 combustor mass concentration due to coagulation (see subsequent subsections) and thus can be 

170 used to predict 𝑘𝑠𝑙𝑚. To allow for a closed-form equation for 𝑘𝑠𝑙𝑚, we use the mass 
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171 concentration per unit volume of core flow at the instrument, which has also been found to be a 

172 good predictor of the GMD and thus 𝑘𝑠𝑙𝑚. This dataset contains 264 measurements and has also 

173 been included in SI Document B, again with additional data removed to protect the identity of 

174 specific engines or manufacturers. 

175 The system loss correction factors have been correlated with BC mass concentration using the 

176 functional form: 

𝑎1 ∙ 𝐶𝐵𝐶,𝑖(1 + 𝛽𝑚𝑖𝑥) + 𝑎2 
= ln ( )𝑘𝑠𝑙𝑚 𝐶𝐵𝐶,𝑖(1 + 𝛽𝑚𝑖𝑥) + 𝑎3 

Eq 2 

177 where 𝛽𝑚𝑖𝑥 is equal to the bypass ratio for mixed-flow engines and zero otherwise. The factor 

178 1 + 𝛽𝑚𝑖𝑥 corrects the exit plane mass concentration for mixed-flow engines to a core-equivalent 

179 value. The form of the equation was chosen to obtain the expected asymptotic behavior at high 

180 mass concentrations or high GMDs (𝑘𝑠𝑙𝑚 → ln 𝑎1) and a bounded value at low concentrations or 

181 
𝑎2low GMDs (𝑘𝑠𝑙𝑚 = ln ).
𝑎3 

182 The fit is conducted using non-linear regression, with 34 of the data points discarded as they 

183 were either below the mass measurement limit of detection (𝐶𝐵𝐶,𝑙𝑖𝑚 = 1.0 μg/m3), were 

184 considered anomalous due to measurement errors, or system loss correction data was not 

185 available. 𝑘𝑠𝑙𝑚 can be applied as a multiplicative factor on the emissions index for the mass of 

186 BC, 𝐸𝐼𝑚,𝑖(𝐵𝐶), which measures the mass of BC produced per mass of fuel burnt [mg/kg-fuel]. 

187 We use the Python package Kapteyn (42), which uses a linear approximation of Eq 2 to estimate 

188 the confidence and prediction intervals. To prevent unrealistic values, we constrain the intervals 

189 to have a value greater than or equal to 1. 

190 Calculating Emissions Indices: Using the SCOPE11 correlation, we can estimate 𝐶𝐵𝐶 from 

191 SN data. This can be converted into an emissions index following the method described by 
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192 Wayson et al. (36). 𝐸𝐼𝑚,𝑖(𝐵𝐶) is calculated by multiplying 𝐶𝐵𝐶,𝑖 with the volumetric flow rate, 𝑄 

193 [m3/kg-fuel]. By assuming a fuel hydrogen content of 13.8% by mass, this is calculated as: 

= 0.776 ∙ AFR + 0.767𝑄unmixed 
Eq 3 

= 0.776 ∙ AFR ∙ (1 + 𝛽) + 0.767𝑄mixed 

194 where, 𝑄unmixed is the volumetric flow rate for engines with an unmixed exhaust nozzle and 

195 𝑄mixed is for engines with mixed nozzles that require a correction for the bypass ratio, 𝛽. These 

196 equations require an estimate of the overall air to fuel ratio (AFR). Wayson et al. (36) provide 

197 estimates for AFR at the four ICAO LTO thrust settings of 106 at idle, 83 at approach, 51 at climb-

198 out and 45 at take-off. We then apply the system loss correction factors to 𝐸𝐼𝑚,𝑖(𝐵𝐶) to estimate 

199 the emissions at the engine exit plane. 

200 Estimating exit plane BC number emissions. The BC number emissions index at the engine 

201 exit plane, 𝐸𝐼𝑁,𝑒(𝐵𝐶), can be calculated using 𝐸𝐼𝑚,𝑒(𝐵𝐶) and an estimate of the geometric mean 

202 diameter (GMD) at the same plane. Assuming a log-normal size distribution, the relationship 

203 between these variables can be shown to be (43): 

6𝐸𝐼𝑚,𝑒(𝐵𝐶) Eq 4 
𝐸𝐼𝑁,𝑒(𝐵𝐶) = 

𝜋𝜌GMD3𝑒4.5(𝑙𝑛𝜎)2 

204 where 𝜌 is the effective density of soot assumed to be 1000 kg/m3 and 𝜎 is the geometric 

205 standard deviation (GSD), which has been found to be ~1.8 from experimental observations 

206 (12,44). 

207 In order to apply this equation, we require an estimate for the GMD at the engine exit plane. 

208 This value is a complex function of production rates in the combustor primary zone, oxidation of 

209 BC in the secondary zone and coagulation of particles as they grow downstream of these regions. 

210 Measurement campaigns have also shown that the GMD tends to increase with thrust rating 

211 (27,29), which is due in part to the increase in pressure (and therefore density) at higher relative 
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212 thrust that drives coagulation rates. As such, we use a measure of the BC mass concentration at 

213 the combustor exit, 𝐶𝐵𝐶,𝑐, which is a function of both 𝐶𝐵𝐶,𝑒 and the conditions at the combustor 

214 exit. 

215 The data required for this correlation is estimated from measurements in dataset-2. The 𝐶𝐵𝐶,𝑒 is 

216 found by converting the 𝐸𝐼𝑚,𝑒(𝐵𝐶) in dataset-2 to a concentration using the volumetric flow rate 

217 calculated via Eq 3. The exit plane concentration is converted to an estimate of 𝐶𝐵𝐶,𝑐 using the 

218 method outlined below. The GMD at the engine exit plane is then estimated using Eq 4. This 

219 first requires converting instrument measured mass and number emission indices to exit plane 

220 values. The loss correction factor for mass emissions ranges between 1.1 and 2.4 and that for 

221 number between 1.3 and 20.7. Finally, we assume an effective soot density of 1000 kg/m3 and 

222 GSD of 1.8. Using dataset-2, we have developed a correlation of the form: 

𝑏 GMD = 𝑎 ⋅ 𝐶𝐵𝐶,𝑐 
Eq 5 

223 where 𝑎 and 𝑏 are constants to be determined. 𝐶𝐵𝐶,𝑒 is scaled to the concentration at the 

224 combustor exit using the ratio of the combustor exit to ambient density: 

𝜌𝑡4
𝐶𝐵𝐶,𝑐 = 𝐶𝐵𝐶,𝑒(1 + 𝛽𝑚𝑖𝑥) 

𝜌𝑎 

Eq 6 

225 where 𝐶𝐵𝐶,𝑐 is the predicted BC mass concentration at the combustor exit, 𝐶𝐵𝐶,𝑒 is the mass 

226 concentration at the engine exit plane, scaled to standard temperature and pressure, 𝛽𝑚𝑖𝑥 is the 

227 same parameter as used in Eq 2, 𝜌𝑎 is the density of ambient air (1.2 kg/m3) and 𝜌𝑡4 is the total 

228 density of air at the combustor exit. 𝜌𝑡4 is dependent on the pressure at the combustor exit, 

229 increasing with the thrust level, and can be found using the ideal gas law: 

𝑃𝑡4
𝜌𝑡4 = 

𝑅air𝑇𝑡4 

Eq 7 
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230 where subscript 𝑡4 represents the turbine inlet/combustor exit location, 𝑃 is the pressure, 𝑇 is the 

231 temperature and 𝑅air the specific gas constant of air. The pressure and temperature at the turbine 

232 inlet can be estimated by assuming no pressure loss in the combustor and using a first order 

233 energy balance across the combustor. 

𝐹 
𝑃𝑡4 = 𝑃𝑡2 (1 + (π00 − 1) )

𝐹00 

Eq 8 
AFR 𝑐𝑝,𝑎 𝑇𝑡3 + LCV 

𝑇𝑡4 = 
𝑐𝑝,𝑒(1 + AFR) 

234 where π00 is the overall pressure ratio in the engine at rated thrust, 𝐹 𝐹00⁄ is the fractional thrust, 

235 AFR is the air to fuel ratio, 𝑐𝑝,𝑎 = 1.005 kJ/kg/K is the heat capacity at constant pressure of air 

236 and 𝑐𝑝,𝑒 = 1.250 kJ/kg/K is that for the combustion products, LCV= 43.2 MJ/kg is the lower 

237 calorific value of the fuel and 𝑇𝑡3 is the temperature at the inlet to the combustor. 𝑇𝑡3 can be 

238 estimated assuming a constant polytropic efficiency, 𝜂𝑝, of 0.9 for the flow through the core fan 

239 and compressor: 

𝛾−1
⁄𝛾𝜂𝑝 𝑃𝑡3

𝑇𝑡3 = 𝑇𝑡2 ( )
𝑃𝑡2 

Eq 9 

240 where 𝑇𝑡2 and 𝑃𝑡2 are the total temperature and pressure at inlet to the gas turbine and 𝛾 is the 

241 heat capacity ratio of air (taken to be 1.4). Using these relationships, we can find the BC mass 

242 concentration at the combustor exit and subsequently conduct a linear regression on the 

243 logarithm of Eq 5. The regression was conducted using the Statsmodel package in Python (45), 

244 which also estimate the confidence and prediction intervals. When conducting the regression, we 

245 discard the same data points that were discarded in the regression conducted for system loss 

246 corrections. 
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247 Estimating global LTO BC emissions: LTO BC emissions for commercial, passenger aviation 

248 activity in 2005 and 2015 can be estimated directly from the number of aircraft operations and the 

249 type of aircraft for each origin-destination pair. The Official Airline Guide (OAG) supplies 

250 schedule data with information on airport pairs that includes both sets of information for a full 

251 year. Matching the aircraft to an engine allows us to estimate SN and fuel flow rates by identifying 

252 the engine in the ICAO engine emissions database (46). This can be used with the ICAO LTO 

253 cycle (32), reflective of aircraft operations up to 915 m above ground level, and the correlations 

254 and 𝐸𝐼𝑁(𝐵𝐶) developed in this paper to calculate the exit-plane mass and for 𝐸𝐼𝑚(𝐵𝐶), 𝑘𝑠𝑙𝑚 

255 number of BC emissions for a specified aircraft engine. Further details on the OAG data and 

256 aircraft-engine pairs can be found in Stettler et al. (24). 

257 Propagating uncertainties: For all the correlations that have been conducted, we include 

258 confidence and prediction intervals. Confidence intervals provide the range between which the 

259 true regression line is expected to be found with probability (1 − 𝛼𝑐). This informs us on the 

260 uncertainty in estimating the mean results. Prediction intervals provides the range between which 

261 an individual observation may lie with probability (1 − 𝛼𝑝). This interval includes the uncertainty 

262 in the mean result, as in confidence intervals, as well as the scatter in the underlying data, leading 

263 to a wider interval. These two intervals encompass the uncertainties inherent in all of the methods. 

264 For example, in the SN to 𝐶𝐵𝐶,𝑖 correlation, the uncertainty increases as the SN decreases. For 

265 differences between measurement systems and their setup and calibration can lead to𝑘𝑠𝑙𝑚, 

266 variations in the mass system loss correction. Finally, the GMD to 𝐶𝐵𝐶,𝑐 correlation relies on 

267 assumptions on the effective soot density and GSD. Given sufficient data, all of these uncertainties 

268 as well as the underlying measurement uncertainties will be reflected in the variation of the 
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269 measurements around the best fit line. In turn, this variability is accounted for in the confidence 

270 and prediction intervals. 

271 The confidence intervals can be used to estimate the uncertainty in the global LTO BC estimates. 

272 We apply the lower and upper confidence intervals for each correlation to get a lower and upper 

273 estimate of the uncertainty in the global LTO BC estimates. The prediction intervals can be used 

274 to estimate the uncertainty in individual predictions of 𝐸𝐼𝑚,𝑖(𝐵𝐶), 𝐸𝐼𝑚,𝑒(𝐵𝐶) and 𝐸𝐼𝑁,𝑒(𝐵𝐶), as 

275 shown in SI Document A. 

276 

277 RESULTS 

278 SN to 𝑪𝑩𝑪,𝒊 correlation: The two step, nonlinear least squares fit leads to the following best fit 

279 relationship: 

648.4 𝑒0.0766⋅𝑆𝑁 μg
] =𝐶𝐵𝐶,𝑖 [ 3 1 + 𝑒−1.098⋅(𝑆𝑁−3.064)m

Eq 10 

280 This is shown by the black, solid line in Figure 1. The 95% confidence intervals in the parameters 

281 are 

3𝑘1 = 648.4 ± 44.9 μg/m

𝑘2 = 0.0766 ± 0.0038 
Eq 11 

𝑘3 = −1.098 ± 0.120 

𝑘4 = −3.064 ± 0.277 

282 The prediction intervals within which future measurements would lie with 90% probability is 

283 also found using a similar two-step method. The resulting intervals are 

Lower: 378.5 𝑒0.0766⋅𝑆𝑁 μg
] =𝐶𝐵𝐶,𝑖 [ 3 1 + 𝑒−1.098⋅(𝑆𝑁−5.066)m Eq 12 
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Upper: μg 1146.2 𝑒0.0766⋅𝑆𝑁 

𝐶𝐵𝐶,𝑖 [ 3
] = 

1 + 𝑒−1.098⋅(𝑆𝑁−1.480)m 

284 These equations, along with the best fit line, are shown in Figure 1. The gradients of the high 

285 SN and low SN limits are equal for the lower, upper and best fit lines. However, the transition 

286 point between these regions moves from 1.480 for the upper line to 5.066 for the lower line. 

287 

288 Figure 1: SCOPE11 best fit line (black) with 95% confidence intervals (red) and 90% prediction 

289 intervals (blue). The unfilled orange circles represent the median values of binned dataset-1 values. 

290 Figure 2 provides a comparison of the SCOPE11 correlation to the FOA3 (36) and Stettler et al. 

291 (37) correlations. The FOA3 relationship (36) was developed using a dataset similar to dataset-1, 

292 where the measurements were not taken using a standardized measurement system, which 

293 consisted of fewer than 75 points (compared to 1406 data pairs used here), and used SN and mass 

294 concentration measurements which were not taken concurrently. Due to these differences, the 

295 FOA3 relationship tends to predict lower 𝐶𝐵𝐶,𝑖 than the SCOPE11 correlation, except at a SN ≈ 2 

296 and between 15 and 20. In addition, the FOA3 model assumes that that 𝐶𝐵𝐶,𝑖 = 0 when SN = 0, 
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297 whereas the data shows a median of 𝐶𝐵𝐶,𝑖 = 19.6 μg/m3 and a variation spanning 3 orders of 

298 magnitude at SN = 0. 

299 

300 Figure 2: Comparison between SCOPE11 (black), FOA3 (dashed, green line) and the Stettler et 

301 al. (26) correlations (dotted, green line). 

302 Stettler et al. (37) used an inverse diffusion flame to generate BC, following a standardized 

303 procedure for measuring SN. However, their methods to measure BC mass differ from the 

304 certification-compliant system. They developed SN – BC mass concentration relationships for 

305 GMDs between 20 and 30 nm and for GMDs of ~60 nm, advising use of the former correlation 

306 for aircraft engines. This correlation tends to predict higher mass concentrations for a wide range 

307 of SN than the SCOPE11 correlation, lying outside of the range of the data found in dataset-1 for 

308 SNs between ~10 and ~25. Stettler et al. (37) also use a functional form which assumes that 𝐶𝐵𝐶,𝑖 = 

309 0 when SN = 0. 
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310 System loss corrections. The median relationship to estimate 𝑘𝑠𝑙𝑚 from 𝐶𝐵𝐶,𝑖 is shown in Eq 

311 13. The 95% confidence intervals for each of the constants is also shown in the set of equations 

312 Eq 14. 

3.219 ∙ 𝐶𝐵𝐶,𝑖(1 + 𝛽𝑚𝑖𝑥) + 312.5 
𝑘𝑠𝑙𝑚 = ln ( ) Eq 13 

𝐶𝐵𝐶,𝑖(1 + 𝛽𝑚𝑖𝑥) + 42.6 

𝑎1 = 3.219 ± 0.135 

3𝑎2 = 312.5 ± 119.1 μg/m Eq 14 

3𝑎3 = 42.6 ± 19.4 μg/m

313 The results of this fit and the associated data is shown in Figure 3. This functional form predicts 

314 that as 𝐶𝐵𝐶,𝑖 continues to increase, 𝑘𝑠𝑙𝑚 tends towards a constant value of ~1.169 ± 0.041. This 

315 is analogous to the tendency of 𝑘𝑠𝑙𝑚 to approach a constant value as the GMD increases (39). In 

316 addition, for 𝐶𝐵𝐶,𝑖 tending towards 0, we find 𝑘𝑠𝑙𝑚 = 1.99, which is a typical value for GMD ≈ 

317 10 nm, the minimum size which the measurement system can reliably capture. The spread in the 

318 measurement points are caused by two effects. First, there are differences between the systems 

319 used by each manufacturer, permitted within the measurement guidelines. These differences can 

320 include, for example, specifications of components such as the VPR, or differences in instrument 

321 calibration. Second, variations in the engine exhaust temperature can change the degree of 

322 thermophoretic losses that occur along sampling lines, which is estimated via an analytical form, 

323 also affecting 𝑘𝑠𝑙𝑚. 
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324 

325 Figure 3: Measured BC mass concentration versus 𝑘𝑠𝑙𝑚 estimated using the line loss calculator. 

326 

327 

328 

Exit plane GMD. The results of the linear least squares regression on the power law relationship 

between 𝐶𝐵𝐶,𝑐 (in μg/m3) and GMD is shown in Eq 15 with associated 95% confidence intervals 

for each constant in Eq 16. 

0.185 Eq 15GMD [nm] = 5.08 𝐶𝐵𝐶,𝑐 

𝑎 = 5.08 ± 0.55 nm 

𝑏 = 0.185 ± 0.015 
Eq 16 
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329 The results of this fit and the associated data are shown in Figure 4. The adjusted R-squared was 

330 found to be 0.72 and p-values < 0.001. This relationship can thus be used to estimate the 𝐸𝐼𝑁,𝑒(𝐵𝐶) 

331 using Eq 4. 

332 

333 Figure 4: Combustor exit BC mass concentration vs GMD in logarithmic axes 

334 The correlation to predict GMD is dependent on the choice of the effective soot density and 

335 GSD. These are both uncertain parameters and we only use estimates of their mean value to 

336 produce this correlation. While the choice of these variables is important in estimating the GMD, 

337 they are not critical to estimating 𝐸𝐼𝑁,𝑒(𝐵𝐶), since the regression constants will vary according to 

338 the assumed density and GSD, leading to a similar estimate in the 𝐸𝐼𝑁,𝑒(𝐵𝐶) but with a different 

339 estimate for the GMD. 
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340 Comparison of measured and predicted EI. Using the results presented in the earlier 

341 sections, we can estimate 𝐸𝐼𝑚,𝑖(𝐵𝐶), 𝐸𝐼𝑚,𝑒(𝐵𝐶) and 𝐸𝐼𝑁,𝑒(𝐵𝐶) for engines found in dataset-2, 

342 beginning with the SN at each mode of operation. Figure 5 shows the comparisons for 𝐸𝐼𝑚(𝐵𝐶) 

343 both with (B) and without system loss corrections (A). 𝐸𝐼𝑁(𝐵𝐶) is shown with system loss 

344 corrections only (C). The R2 and root mean square error (RMSE) for each mode of operation as 

345 well as overall are shown in Table 1. These values show that the overall R2 is ~0.8 for all cases, 

346 however the values for taxi operations for 𝐸𝐼𝑚,𝑖(𝐵𝐶) and 𝐸𝐼𝑚,𝑒(𝐵𝐶) tend to be lower than the 

347 other modes. RMSE values vary between 62.9 mg/kg-fuel and 74.7 mg/kg-fuel for 𝐸𝐼𝑚,𝑖(𝐵𝐶) 

348 and between 76.4 mg/kg-fuel and 87.6 mg/kg-fuel for 𝐸𝐼𝑚,𝑒(𝐵𝐶). Table 1 also includes the R2 

349 and RMSE values when using the FOA3 (36) or Stettler (37) correlation in place of SCOPE11, 

350 to estimate 𝐸𝐼𝑚,𝑖(𝐵𝐶). While the R2 values are all similar, our methods tends to produce a higher 

351 R2 than both, except at taxi thrust. The RMSE is lower using the SCOPE11 than the FOA3 

352 method for all modes except taxi by 10-15%. The RMSE using the Stettler et al. (37) correlation 

353 are 168% larger than using the SCOPE11 method overall, increasing as a function of mode. 

354 

355 Table 1: R2 and RMSE values for instrument mass emissions index (𝐸𝐼𝑚,𝑖(𝐵𝐶)), exit-plane mass 

356 emissions index (𝐸𝐼𝑚,𝑒(𝐵𝐶)), and exit-plane number emissions index (𝐸𝐼N,𝑒(𝐵𝐶)), separated by 

357 mode of operation and overall. For the exit-plane mass emissions, the SCOPE11 method is 

358 compared to the FOA3 (36) and Stettler et al. (37) methods. 

𝑬𝑰𝒎,𝒊(𝑩𝑪) 𝑬𝑰𝒎,𝒆(𝑩𝑪) 𝑬𝑰𝑵,𝒆(𝑩𝑪) 

SCOPE11 FOA3 (36) Stettler et al. (37) SCOPE11 SCOPE11 

Taxi R2 0.26 0.35 0.36 0.31 0.77 
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  359 

RMSE 65 mg/kg 61 mg/kg 102 mg/kg 78 mg/kg 3.1  1015 

particles/kg 

Approach R2 

RMSE 

0.83 

63 mg/kg 

0.76 

73 mg/kg 

0.78 

149 mg/kg 

0.83 

86 mg/kg 

0.84 

2.6  1015 

particles/kg 

Climb-out R2 

RMSE 

0.83 

74 mg/kg 

0.79 

84 mg/kg 

0.81 

224 mg/kg 

0.84 

86 mg/kg 

0.89 

1.8  1015 

particles/kg 

Take-off R2 

RMSE 

0.75 

75 mg/kg 

0.73 

82 mg/kg 

0.75 

249 mg/kg 

0.80 

86 mg/kg 

0.85 

8.2  1014 

particles/kg 

Overall R2 

RMSE 

0.79 

69 mg/kg 

0.75 

75 mg/kg 

0.76 

186 mg/kg 

0.80 

82 mg/kg 

0.82 

1.6  1015 

particles/kg 
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361 Figure 5: Parity plots of predicted versus measured results for (A) 𝐸𝐼𝑚,𝑖(𝐵𝐶), (B) 𝐸𝐼𝑚,𝑒(𝐵𝐶) and 

362 (C) 𝐸𝐼N,𝑒(𝐵𝐶). The 𝑅2 in each case are 0.79, 0.80 and 0.82 respectively. 

363 We have also propagated the prediction intervals from each correlation to estimate the 

364 prediction intervals for mass and number emission indices, and these results can be found in SI 

365 Document A. We find that the uncertainty in 𝐸𝐼𝑚,𝑖(𝐵𝐶) tends to decrease as the emissions 

366 increase and the uncertainty can span almost 2 orders of magnitude at lower SN. For number 

367 emissions, the uncertainty decreases slightly as emissions decrease, however in all cases is large 

368 and spans 1-2 orders of magnitude. 

369 Global LTO BC emissions. Estimates of annual emissions of BC due to LTO activity for 

370 2005 and 2015 are presented in Table 2. Using the SCOPE11 correlation, we estimate LTO BC 

371 mass emissions to be 0.83 Gg/yr (95% confidence interval (CI): 0.72 – 0.95) in 2005 and 0.74 

372 Gg/yr (95% CI: 0.64 – 0.84) in 2015. We also find LTO BC number emissions to be 3.23 × 1025 

373 particles/yr (95% CI: 2.15 – 5.02 × 1025) and 2.85 × 1025 particles/yr (95% CI: 1.86 – 4.49 × 

374 1025) in 2005 and 2015, respectively. 

375 

376 Table 2: Comparison of global LTO BC estimates. For SCOPE11-estimated BC mass and number 

377 emissions, we include estimates of the 95% confidence intervals in parentheses. 

Method 

2005 

LTO BC Mass 

[Gg/yr] 

2015 

Fleet average LTO 𝐄𝐈𝐦(𝐁𝐂) 

[mg/kg-fuel] 

2005 2015 

SCOPE11 

FOA3 (36) 

0.83 (0.72 – 

0.55 

0.95) 0.74 (0.64 – 0.84) 

0.51 

55 (47 – 63) 40 (35 – 46) 

37 28 
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Stettler et al. (37) 1.48 1.38 98 75 

LTO BC Number 

[× 𝟏𝟎𝟐𝟓 particles/yr] 

Fleet average LTO 𝐄𝐈𝐍,𝐞(𝐁𝐂) 

[× 𝟏𝟎𝟏𝟒 particles/kg-fuel] 

SCOPE11 3.23 (2.15 – 5.02) 2.85 (1.86 – 4.49) 21 (14 – 33) 15 (10 – 24) 

378 

379 The difference in annual LTO BC mass emissions between methods shows a similar trend to 

380 that found in Figure 1 for the correlation between SN and 𝐶𝐵𝐶. The SCOPE11 method predicts 

381 ~31% higher BC mass emissions than FOA3 and ~86% lower than the Stettler et al. (37) 

382 correlation for 2015, and the trend is similar for 2005. We also find that the fleet-average 

383 EI𝑚(BC) using the SCOPE11 method is found to lie between the estimates using the other two 

384 methods, with similar relative differences for each year. 

385 We also note that SCOPE11-estimated mass emissions decreased by ~11% between 2005 and 

386 2015. The FOA3 (36) and Stettler et al. (37) correlations also predict a decrease in mass 

387 emissions of ~7% each. However, the total LTO fuel burn in 2015 was 22% higher than in 2005. 

388 This corresponds to a decrease in the fleet average LTO 𝐸𝐼𝑚(𝐵𝐶) of(38) correlation between 23 

389 – 27% from 2005 to 2015. We also notice a similar trend in number emissions, which decrease 

390 by ~12% from 2005 to 2015, also reflecting a decrease in fleet average 𝐸𝐼𝑁(𝐵𝐶) of ~29%. 

391 DISCUSSION 

392 The SCOPE11 SN – 𝐶𝐵𝐶 correlation reduces the error in estimating BC emissions from aircraft 

393 engines in comparison to both the FOA3 (36) and Stettler (37) correlations. This improvement 

394 stems from the use of (i) a new database of simultaneously-acquired SN and BC mass 

395 concentration measurements taken using certification-compliant measurement systems from a 

396 representative sample of modern aircraft engines; (ii) a new functional form that better follows 

397 the trends between the SN and BC mass concentration relationship at SN ≲ 5; and (iii) a more 

24 



 

   

   

    

    

  

   

   

   

   

  

     

     

     

    

   

 

 

  

  

     

    

   

    

398 complete approach to characterize the prediction uncertainty. In addition, we have extended the 

399 method to predict emissions at the engine exit plane, which accounts for measurement system 

400 losses. If system losses are not accounted for, LTO BC emissions may be systematically 

401 underestimated by ~20%. Given the direct climate and air quality impacts of aviation BC 

402 emissions, it is important to account for measurement system losses when developing emissions 

403 inventories. We have also developed a method for estimating BC number emissions at the engine 

404 exit plane, by assuming a lognormal size distribution and estimating the GMD from a measure of 

405 the BC mass concentration at the combustor exit, and applied this to the development of an 

406 inventory of LTO number emissions. To the best of our knowledge, this is the first estimate of 

407 BC number emissions from global commercial aircraft LTO operations. 

408 In order to quantify and propagate uncertainty, confidence and prediction intervals have been 

409 determined for each correlation and are shown in the figures, with numerical values provided in 

410 SI Document B. By propagating confidence intervals through the calculation, lower and upper 

411 bounds on the mean global LTO BC emissions are determined. These intervals depend not only 

412 on the form of the fitting equation, but also on the spread in the underlying data. This spread 

413 depends on variables for which information is available and includes uncertainty in inputs and 

414 constant parameters such as the SN, effective soot density and GSD that are required to apply the 

415 SCOPE11 method. The latter two variables are of particular importance in the number 

416 estimation. While variations in the assumed mean values affects the prediction of the GMD, this 

417 has only a second-order effect on the 𝐸𝐼N,𝑒(𝐵𝐶) as the regression constants would also change if 

418 different values of the effective soot density and GSD were used. The uncertainty ranges 

419 calculated highlight the limited degree of correlation between SN and BC concentration at lower 

420 emission levels, demonstrating the benefit of developing future emissions standards on mass 
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421 concentration and particle number bases and that direct measurements should be used for 

422 assessment purposes where they are available. 

423 While the focus of this work is on LTO operations, this work could be combined with existing 

424 altitude scaling relationships (47), or used in conjunction with results of recent flight 

425 measurement campaigns (48) to inform estimates of cruise-altitude BC emissions. Given the 

426 infrequent opportunities to collect BC emissions data at cruise altitude, the development of 

427 comprehensive, full-flight inventories of BC mass and number emissions must be based on 

428 ground-level emissions estimates, such as those provided by the SCOPE11 method. Such 

429 inventories are important components which enable the assessment of aviation’s environmental 

430 impacts. The ability to predict the size distribution of emissions at the engine exit plane, as in the 

431 method developed here, is particularly important for understanding the evolution and radiative 

432 impact of contrails, and in modeling the indirect effects of BC particles on natural clouds (49), 

433 both of which are among the most uncertain of aviation’s climate impacts. 

434 AUTHOR INFORMATION 

435 Corresponding Author 

436 *E-mail: speth@mit.edu; phone: +1 617 253 1516 

437 Funding Sources 

438 This work was made possible by funding from the US Federal Aviation Administration (FAA) 

439 Office of Environment and Energy under Project 48 of the ASCENT Center of Excellence under 

440 grant 13-C-AJFE-MIT Amendment No. 036. 

441 Notes 

442 The authors declare no competing financial interests. 

26 

mailto:speth@mit.edu


 

  

     

   

        

  

  

  

  

     

  

      

    

     

  

     

  

   

  

    

       

     

    

443 Supporting Information 

444 SI Document A: Derivation of volumetric flow rate, information on measurement data and 

445 confidence intervals and the overall calculation procedure for implementation purposes. 

446 SI Document B: Excel spreadsheet containing the raw data used for developing correlations and 

447 associated confidence intervals. 
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	ABSTRACT 

	13 
	13 
	Black carbon (BC) emissions from aircraft engines lead to an increase in the atmospheric burden 

	14 
	14 
	of fine particulate matter (PM2.5). Exposure to PM2.5 from sources including aviation is associated 

	15 
	15 
	with an increased risk of premature mortality, and BC suspended in the atmosphere has a warming 

	16 
	16 
	impact on the climate. BC particles emitted from aircraft also serve as nuclei for contrail ice 

	17 
	17 
	particles, which are a major component of aviation’s climate impact. 
	In order to facilitate the 


	18 evaluation of these impacts, we have developed a method to estimate BC mass and number 19 emissions at the engine exit plane, referred to as the Smoke Correlation for Particle Emissions – 20 CAEP11 (SCOPE11). We use a dataset consisting of SN – BC mass concentration pairs, collected 21 using certification-compliant measurement systems, to develop a new relationship between Smoke 22 Number (SN) and BC mass concentration. In addition, we use a complementary dataset to estimate 23 measurement system loss co
	26 0.84) and 2.85 × 10particles/yr (95% CI: 1.86 – 4.49 × 10). 
	25 
	25

	28 
	29 
	29 
	29 
	INTRODUCTION 

	30 
	30 
	Global commercial aviation activity is expected to grow by 1.5-4.1% annually between 2020 

	31 
	31 
	and 2050 under a range of IPCC scenarios (1). The upper side of this range is consistent with 

	32 
	32 
	industry projections that expect requiring almost double the fleet size by 2036 (2,3). Emissions 

	33 
	33 
	from 
	aircraft 
	engines 
	near 
	airports 
	can 
	increase 
	particulate 
	matter 
	(PM) 
	and 
	ozone 
	(O3) 

	34 
	34 
	concentrations (4,5). 
	The inhalation of fine PM with an aerodynamic diameter below 2.5 m 


	27 
	27 
	27 
	TOC ART 

	35 
	35 
	(PM2.5) by surrounding populations can lead to adverse health impacts and an increase in 

	36 
	36 
	premature mortalities (6,7). 

	37 
	37 
	While current epidemiological evidence is based on mass concentrations, increasing 

	38 
	38 
	toxicological evidence points to the importance of number (or surface area) as a metric of 

	39 
	39 
	importance (8). This is a particular concern for aviation engines due to their capacity to produce 

	40 
	40 
	so-called “ultra-fine” particulate matter, with aerodynamic diameter below 100 nm (9–14). 

	41 
	41 
	Emissions of these ultra-fine particles can lead to a significant increase in ambient particle number 

	42 
	42 
	concentrations, with decreases in average particle size, leading to increased lung deposition 

	43 
	43 
	fractions (15–18). The air quality and health impacts from aviation emissions have been quantified 

	44 
	44 
	at scales spanning airport and regional level calculations (19–22) to national level estimates 

	45 
	45 
	(5,23,24) to global aviation activity (4,25,26). Median estimates for premature mortalities 

	46 
	46 
	attributable to all aviation emissions in 2006 vary between 9,000 (25) and 16,000 (4), which 

	47 
	47 
	represents ≲ 2% of premature mortalities caused by outdoor air quality degradation due to 

	48 
	48 
	anthropogenic emissions. BC emissions account for ~0.2% of this health impact due to full flight, 

	49 
	49 
	global emissions (27). However, this result does not account for differences between fine and ultra
	-


	50 
	50 
	fine PM, and the BC contribution may be higher at a regional level (5). In addition, BC particles 

	51 
	51 
	emitted at cruise altitudes serve as ice nuclei to promote the formation of contrails. Contrails are 

	52 
	52 
	considered to be one of the largest of aviation’s climate impacts (28,29) and have been found to 

	53 
	53 
	be sensitive to BC number emissions (30,31). 

	54 
	54 
	These concerns have led the International Civil Aviation Organization’s (ICAO) Committee for 

	55 
	55 
	Aviation Environmental Protection (CAEP) to develop emissions standards for aircraft engines, 

	56 
	56 
	which currently include limits on NOx, unburned hydrocarbons, and carbon monoxide emissions 

	57 
	57 
	during a standard landing and takeoff (LTO) cycle (32). Aircraft engine black carbon (BC) 

	58 
	58 
	emissions have also been regulated indirectly through the Smoke Number (SN) standard adopted 

	59 
	59 
	in 1981. 

	60 
	60 
	The SN standard was developed to limit the visibility of the black soot from aircraft engine 

	61 
	61 
	exhaust plumes. It is measured by capturing the BC in the exhaust stream on a filter and measuring 

	62 
	62 
	its change in reflectance (33). While the SN is useful for estimating the visibility of the plume, it 

	63 
	63 
	is not a suitable metric to quantify air quality impacts on human health. Advanced measurement 

	64 
	64 
	systems have therefore been developed to measure BC emissions from aircraft engines. The 

	65 
	65 
	systems have evolved over a series of engine measurement campaigns, including the Aircraft 

	66 
	66 
	Particle Emissions Experiment (APEX) (34), the Aviation-Particulate Regulatory Instrumentation 

	67 
	67 
	Demonstration Experiment (A-PRIDE) (9), and an additional study demonstrating the method for 

	68 
	68 
	smaller engines (10). This work has culminated in an Aerospace Recommended Practice (ARP) 

	69 
	69 
	that provides guidelines for the measurement of BC emissions (35). 

	70 
	70 
	In addition to improvements in the measurement systems, reporting requirements and a mass 

	71 
	71 
	concentration standard for engines produced after 1 January 2020 were established at the 10th 

	72 
	72 
	meeting of CAEP. While this reporting requirement is useful for quantifying future emissions of 

	73 
	73 
	BC mass and number, there remain a range of engines that are expected to continue active 

	74 
	74 
	operation with no BC measurements available. For this reason, various correlations have been 

	75 
	75 
	developed that relate SN with BC mass concentration, including the FOA3 method (36) and a 

	76 
	76 
	correlation developed by Stettler et al. (37). These have been used as the basis of estimates for 

	77 
	77 
	several air quality studies, however they can vary by a factor of 4 in estimating total global BC 

	78 
	78 
	emissions (38). To the best of the authors’ knowledge, no relationships exist to predict BC number 

	79 
	79 
	emissions from engine certification data, except for using simplified relationships that are 

	80 
	80 
	extremely sensitive to the choice of a constant geometric mean diameter (GMDs). 

	81 
	81 
	In this paper, we use a dataset of simultaneous SN and mass concentration measurements to 

	82 
	82 
	improve the estimation of aircraft engine BC mass concentration from SN data (dataset-1). While 

	83 
	83 
	similar in form to the original dataset used to develop FOA3 (36), the measurements used here 

	84 
	84 
	were taken using a standardized measurement system defined in ICAO Annex 16 Vol. II (32) and 

	85 
	85 
	the SN and mass concentration measurements were acquired simultaneously. The FOA3 method 

	86 
	86 
	was developed using certification SN data, with mass concentration measured independently using 

	87 
	87 
	in-service engines. Thus, dataset-1 is expected to lead to a more reliable correlation than these 

	88 
	88 
	previous studies. Despite the advancements in measurement systems, the long sampling lines 

	89 
	89 
	required to transport the BC from engine exit to measurement devices lead to particle losses as, 

	90 
	90 
	for example, particles are deposited on the walls of the sampling lines. These losses have been 

	91 
	91 
	discussed in various measurement campaigns (11,34) and can be in excess of 50%, increasing as 

	92 
	92 
	the geometric mean diameter (GMD) of particles decreases (39). Using a dataset of simultaneous 

	93 
	93 
	BC mass and particle number emissions (dataset-2), we have developed a correlation to estimate 

	94 
	94 
	mass system loss correction factors when only mass concentration data is available. Using this 

	95 
	95 
	same dataset, we have developed a method to predict BC number emissions by assuming a 

	96 
	96 
	lognormal size distribution and correlating the GMD with a function of measured mass 

	97 
	97 
	concentration and the pressure at the combustor exit. These correlations and the method to convert 

	98 
	98 
	them to total BC mass and number emissions is referred to as the Smoke COrrelation for Particle 

	99 
	99 
	Emissions – CAEP11 (SCOPE11), and will be used by airports and ICAO-CAEP in developing 

	100 
	100 
	international standards for the regulation of aircraft engine BC emissions. In addition, this work 

	101 
	101 
	can be used by modelers to improve estimates for aviation BC emissions and evaluations of 

	102 
	102 
	aviation’s environmental impact. 

	103 
	103 

	104 
	104 
	MATERIALS AND METHODS 

	105 
	105 
	SN to BC mass concentration correlation: We use a dataset of 1407 paired BC mass 

	106 
	106 
	concentration (𝐶𝐵𝐶) and SN measurements referred to as dataset-1. These measurements were 

	107 
	107 
	taken in order to support the CAEP process, and comprise measurements of 24 aircraft engine 

	108 
	108 
	models from 6 manufacturers over a range of engine thrust settings. The SN and 𝐶𝐵𝐶 measurements 

	109 
	109 
	were made using standardized measurement systems as defined in ICAO Annex 16 Vol. II (32) 

	110 
	110 
	and the data represents measurements at the instrument (𝐶𝐵𝐶,𝑖), rather than at the engine exit plane 

	111 
	111 
	(𝐶𝐵𝐶,𝑒), but does include corrections for thermophoretic losses (32,33). The measurement system 

	112 
	112 
	involves three sections: collection, transfer and measurement. The collection of BC particles 

	113 
	113 
	occurs through a single-or multi-point rake with sampling probes, after which the sample flows 

	114 
	114 
	through a heated sample line. The sample is then transferred to a diluter to reduce further 

	115 
	115 
	coagulation and thermophoretic losses, before being passed through a 1 m cyclone separator in 

	116 
	116 
	order to remove large particles that are assumed not to be generated by combustion. Finally, BC 

	117 
	117 
	mass measurements are made using either an AVL Micro Soot Sensor (MSS) or Laser Induced 

	118 
	118 
	Incandescence (LII), and number measurements are made using an AVL Particle Counter (APC), 

	119 
	119 
	which also requires a volatile particle remover (VPR) to condition the sample for non-volatile 

	120 
	120 
	particle number measurements. Major sources of uncertainty are found in the measurement 

	121 
	121 
	instruments, estimated to be ~25% for both mass and number, as well as errors due to temperature 

	122 
	122 
	and pressure measurements, and errors due to dilution factor measurements (9). 

	123 
	123 
	By using standardized, certification-compliant measurement systems, dataset-1 contains high 

	124 
	124 
	quality measured data from a wide variety of engines, which has previously been unavailable. This 

	125 
	125 
	data has been included in the Supplementary Information (SI) Document B, with additional 

	126 
	126 
	information removed to respect proprietary concerns for each manufacturer. The measurement 

	127 
	127 
	points are shown inError! Reference source not found. Figure 1 (blue circles). We note that 
	points are shown inError! Reference source not found. Figure 1 (blue circles). We note that 


	128 
	128 
	while the data has a general exponential trend for SN ≳ 5 (linear in semi-logarithmic axes), the 

	129 
	129 
	behavior below this SN is not as clear. In the SN < 5 regime, there is significant spread in the data, 

	130 
	130 
	such that at SN = 0, the 𝐶𝐵𝐶,𝑖 can vary by approximately 3 orders of magnitude. To help visualize 

	131 
	131 
	the trends, we have separated the data into 25 distinct bins by range of SN and plotted the median 

	132 
	132 
	mass concentration for each bin (orange, unfilled circles). The median set of data reveals an 

	133 
	133 
	exponential trend for SN ≲ 5 that has a steeper gradient than that for higher SNs. 

	134 
	134 
	To account for the observed shape and the changing trend between low and high SN, we 

	135 
	135 
	develop a correlation using the product of an exponential function (governing the behavior for 

	136 
	136 
	high SN) and a logistic function (governing the behavior for low SN): 

	TR
	𝑘1𝑒𝑘2SN Eq 1 =𝐶𝐵𝐶,𝑖 1 + 𝑒𝑘3(SN+𝑘4) 

	137 
	137 
	where 𝑘𝑖 are constants that are determined by a two-step nonlinear least-squares fit. In each step, 

	138 
	138 
	the fit is carried out on the logarithm of 𝐶𝐵𝐶,𝑖 in order to produce a fit that is applicable across the 

	139 
	139 
	full range of SNs. In the first step, the constants 𝑘1 and 𝑘2 are found by fitting the data for SN ≥ 

	140 
	140 
	= 𝑘1𝑒𝑘2⋅SN5 to the exponential function 𝐶𝐵𝐶,𝑖 . In the second step, the full data set is fit to the 

	141 
	141 
	combined equation, holding 𝑘1 and 𝑘2 constant, in order to find 𝑘3 and 𝑘4. 

	142 
	142 
	To quantify the variability within the data, we also calculate prediction intervals. These are the 

	143 
	143 
	intervals between which we have a specified probability (e.g. 90%) that a new concurrent SN 

	144 
	144 
	and 𝐶𝐵𝐶,𝑖 measurement would lie. To determine these bounds, we hold 𝑘2 and 𝑘3 fixed. 𝑘1 is 

	145 
	145 
	found using an optimization routine that uses the SN ≥ 5 data and ensures 5% of the data above 

	146 
	146 
	and 5% of the data below the upper and lower bounding lines respectively. The same method is 

	147 
	147 
	used to find 𝑘4, but using the data for SN ≤ 5. 

	148 
	148 
	System loss corrections: As with any sampling-based particle measurement, there are particle 

	149 
	149 
	losses in the standardized measurement system which lead to differences between the BC 

	150 
	150 
	emissions measured at the instruments versus those actually emitted from the engine at the exit 

	151 
	151 
	plane. Losses occur due to changes in flow direction that cause particles to embed on internal 

	152 
	152 
	surfaces. This loss can occur due to bends in the sampling lines and the lack of penetration of 

	153 
	153 
	particles through individual components. The losses of particles in individual components can also 

	154 
	154 
	be a function of size. For example, losses in the VPR are determined to be around 60% for particles 

	155 
	155 
	with 15 nm aerodynamic diameter, and 30% at a diameter of 50 nm (10), consistent with trends 

	156 
	156 
	from measurements for automotive vehicle emissions (40). These losses, referred to as system 

	157 
	157 
	losses, have been found to reduce the measured mass of emissions by up to a factor of 2, while 

	158 
	158 
	losses for number emissions can be greater than a factor of 50 (39). Losses depends on particle 

	159 
	159 
	size due to device-specific penetration functions and the higher diffusion of smaller particles that 

	160 
	160 
	can be absorbed on the line walls. These losses can be estimated by using a system loss calculator 

	161 
	161 
	developed by SAE (39), which requires input on the exhaust gas temperature, sampling line lengths 

	162 
	162 
	and temperatures, and measured values. 

	163 
	163 
	Given that dataset-1 contains measurements at the instrument, we must correct for system 

	164 
	164 
	losses to estimate emissions at the engine exit plane. Using a set of simultaneous BC mass and 

	165 
	165 
	particle number data measured using the standard-compliant measurement systems (41) (dataset
	-


	166 
	166 
	2) and corrected for differences in fuel hydrogen content, system loss correction factors for mass 

	167 
	167 
	(𝑘𝑠𝑙𝑚) have been estimated using the SAE system loss calculator (39). We observe that the mean 

	168 
	168 
	particle size, or the geometric mean diameter (GMD), tends to increase with increasing 

	169 
	169 
	combustor mass concentration due to coagulation (see subsequent subsections) and thus can be 

	170 
	170 
	used to predict 𝑘𝑠𝑙𝑚. To allow for a closed-form equation for 𝑘𝑠𝑙𝑚, we use the mass 


	171 
	171 
	171 
	concentration per unit volume of core flow at the instrument, which has also been found to be a 

	172 
	172 
	good predictor of the GMD and thus 𝑘𝑠𝑙𝑚. This dataset contains 264 measurements and has also 

	173 
	173 
	been included in SI Document B, again with additional data removed to protect the identity of 

	174 
	174 
	specific engines or manufacturers. 

	175 
	175 
	The system loss correction factors have been correlated with BC mass concentration using the 

	176 
	176 
	functional form: 

	TR
	𝑎1 ∙ 𝐶𝐵𝐶,𝑖(1 + 𝛽𝑚𝑖𝑥) + 𝑎2 = ln ( )𝑘𝑠𝑙𝑚 𝐶𝐵𝐶,𝑖(1 + 𝛽𝑚𝑖𝑥) + 𝑎3 
	Eq 2 

	177 
	177 
	where 𝛽𝑚𝑖𝑥 is equal to the bypass ratio for mixed-flow engines and zero otherwise. The factor 

	178 
	178 
	1 + 𝛽𝑚𝑖𝑥 corrects the exit plane mass concentration for mixed-flow engines to a core-equivalent 

	179 
	179 
	value. The form of the equation was chosen to obtain the expected asymptotic behavior at high 

	180 
	180 
	mass concentrations or high GMDs (𝑘𝑠𝑙𝑚 → ln 𝑎1) and a bounded value at low concentrations or 

	181 
	181 
	𝑎2low GMDs (𝑘𝑠𝑙𝑚 = ln ).𝑎3 

	182 
	182 
	The fit is conducted using non-linear regression, with 34 of the data points discarded as they 

	183 
	183 
	were either below the mass measurement limit of detection (𝐶𝐵𝐶,𝑙𝑖𝑚 = 1.0 μg/m3), were 

	184 
	184 
	considered anomalous due to measurement errors, or system loss correction data was not 

	185 
	185 
	available. 𝑘𝑠𝑙𝑚 can be applied as a multiplicative factor on the emissions index for the mass of 

	186 
	186 
	BC, 𝐸𝐼𝑚,𝑖(𝐵𝐶), which measures the mass of BC produced per mass of fuel burnt [mg/kg-fuel]. 

	187 
	187 
	We use the Python package Kapteyn (42), which uses a linear approximation of Eq 2 to estimate 
	We use the Python package Kapteyn (42), which uses a linear approximation of Eq 2 to estimate 


	188 
	188 
	the confidence and prediction intervals. To prevent unrealistic values, we constrain the intervals 

	189 
	189 
	to have a value greater than or equal to 1. 

	190 
	190 
	Calculating Emissions Indices: Using the SCOPE11 correlation, we can estimate 𝐶𝐵𝐶 from 

	191 
	191 
	SN data. This can be converted into an emissions index following the method described by 


	192 
	192 
	192 
	Wayson et al. (36). 𝐸𝐼𝑚,𝑖(𝐵𝐶) is calculated by multiplying 𝐶𝐵𝐶,𝑖 with the volumetric flow rate, 𝑄 

	193 
	193 
	[m3/kg-fuel]. By assuming a fuel hydrogen content of 13.8% by mass, this is calculated as: 

	TR
	= 0.776 ∙ AFR + 0.767𝑄unmixed 

	TR
	Eq 3 

	TR
	= 0.776 ∙ AFR ∙ (1 + 𝛽) + 0.767𝑄mixed 

	194 
	194 
	where, 𝑄unmixed is the volumetric flow rate for engines with an unmixed exhaust nozzle and 

	195 
	195 
	𝑄mixed is for engines with mixed nozzles that require a correction for the bypass ratio, 𝛽. These 

	196 
	196 
	equations require an estimate of the overall air to fuel ratio (AFR). Wayson et al. (36) provide 

	197 
	197 
	estimates for AFR at the four ICAO LTO thrust settings of 106 at idle, 83 at approach, 51 at climb
	-


	198 
	198 
	out and 45 at take-off. We then apply the system loss correction factors to 𝐸𝐼𝑚,𝑖(𝐵𝐶) to estimate 

	199 
	199 
	the emissions at the engine exit plane. 

	200 
	200 
	Estimating exit plane BC number emissions. The BC number emissions index at the engine 

	201 
	201 
	exit plane, 𝐸𝐼𝑁,𝑒(𝐵𝐶), can be calculated using 𝐸𝐼𝑚,𝑒(𝐵𝐶) and an estimate of the geometric mean 

	202 
	202 
	diameter (GMD) at the same plane. Assuming a log-normal size distribution, the relationship 

	203 
	203 
	between these variables can be shown to be (43): 

	TR
	6𝐸𝐼𝑚,𝑒(𝐵𝐶) Eq 4 𝐸𝐼𝑁,𝑒(𝐵𝐶) = 𝜋𝜌GMD3𝑒4.5(𝑙𝑛𝜎)2 

	204 
	204 
	where 𝜌 is the effective density of soot assumed to be 1000 kg/m3 and 𝜎 is the geometric 

	205 
	205 
	standard deviation (GSD), which has been found to be ~1.8 from experimental observations 

	206 
	206 
	(12,44). 

	207 
	207 
	In order to apply this equation, we require an estimate for the GMD at the engine exit plane. 

	208 
	208 
	This value is a complex function of production rates in the combustor primary zone, oxidation of 

	209 
	209 
	BC in the secondary zone and coagulation of particles as they grow downstream of these regions. 

	210 
	210 
	Measurement campaigns have also shown that the GMD tends to increase with thrust rating 

	211 
	211 
	(27,29), which is due in part to the increase in pressure (and therefore density) at higher relative 


	212 
	212 
	212 
	thrust that drives coagulation rates. As such, we use a measure of the BC mass concentration at 

	213 
	213 
	the combustor exit, 𝐶𝐵𝐶,𝑐, which is a function of both 𝐶𝐵𝐶,𝑒 and the conditions at the combustor 

	214 
	214 
	exit. 

	215 
	215 
	The data required for this correlation is estimated from measurements in dataset-2. The 𝐶𝐵𝐶,𝑒 is 

	216 
	216 
	found by converting the 𝐸𝐼𝑚,𝑒(𝐵𝐶) in dataset-2 to a concentration using the volumetric flow rate 

	217 
	217 
	calculated via Eq 3. The exit plane concentration is converted to an estimate of 𝐶𝐵𝐶,𝑐 using the 
	calculated via Eq 3. The exit plane concentration is converted to an estimate of 𝐶𝐵𝐶,𝑐 using the 


	218 
	218 
	method outlined below. The GMD at the engine exit plane is then estimated using Eq 4. This 
	method outlined below. The GMD at the engine exit plane is then estimated using Eq 4. This 


	219 
	219 
	first requires converting instrument measured mass and number emission indices to exit plane 

	220 
	220 
	values. The loss correction factor for mass emissions ranges between 1.1 and 2.4 and that for 

	221 
	221 
	number between 1.3 and 20.7. Finally, we assume an effective soot density of 1000 kg/m3 and 

	222 
	222 
	GSD of 1.8. Using dataset-2, we have developed a correlation of the form: 

	TR
	𝑏 GMD = 𝑎 ⋅ 𝐶𝐵𝐶,𝑐 
	Eq 5 

	223 
	223 
	where 𝑎 and 𝑏 are constants to be determined. 𝐶𝐵𝐶,𝑒 is scaled to the concentration at the 

	224 
	224 
	combustor exit using the ratio of the combustor exit to ambient density: 

	TR
	𝜌𝑡4𝐶𝐵𝐶,𝑐 = 𝐶𝐵𝐶,𝑒(1 + 𝛽𝑚𝑖𝑥) 𝜌𝑎 
	Eq 6 

	225 
	225 
	where 𝐶𝐵𝐶,𝑐 is the predicted BC mass concentration at the combustor exit, 𝐶𝐵𝐶,𝑒 is the mass 

	226 
	226 
	concentration at the engine exit plane, scaled to standard temperature and pressure, 𝛽𝑚𝑖𝑥 is the 

	227 
	227 
	same parameter as used in Eq 2, 𝜌𝑎 is the density of ambient air (1.2 kg/m3) and 𝜌𝑡4 is the total 
	same parameter as used in Eq 2, 𝜌𝑎 is the density of ambient air (1.2 kg/m3) and 𝜌𝑡4 is the total 


	228 
	228 
	density of air at the combustor exit. 𝜌𝑡4 is dependent on the pressure at the combustor exit, 

	229 
	229 
	increasing with the thrust level, and can be found using the ideal gas law: 

	TR
	𝑃𝑡4𝜌𝑡4 = 𝑅air𝑇𝑡4 
	Eq 7 


	230 
	230 
	230 
	where subscript 𝑡4 represents the turbine inlet/combustor exit location, 𝑃 is the pressure, 𝑇 is the 

	231 
	231 
	temperature and 𝑅air the specific gas constant of air. The pressure and temperature at the turbine 

	232 
	232 
	inlet can be estimated by assuming no pressure loss in the combustor and using a first order 

	233 
	233 
	energy balance across the combustor. 

	TR
	𝐹 

	TR
	𝑃𝑡4 = 𝑃𝑡2 (1 + (π00 − 1) )𝐹00 

	TR
	Eq 8 

	TR
	AFR 𝑐𝑝,𝑎 𝑇𝑡3 + LCV 𝑇𝑡4 = 𝑐𝑝,𝑒(1 + AFR) 

	234 
	234 
	where π00 is the overall pressure ratio in the engine at rated thrust, 𝐹 𝐹00⁄ is the fractional thrust, 

	235 
	235 
	AFR is the air to fuel ratio, 𝑐𝑝,𝑎 = 1.005 kJ/kg/K is the heat capacity at constant pressure of air 

	236 
	236 
	and 𝑐𝑝,𝑒 = 1.250 kJ/kg/K is that for the combustion products, LCV= 43.2 MJ/kg is the lower 

	237 
	237 
	calorific value of the fuel and 𝑇𝑡3 is the temperature at the inlet to the combustor. 𝑇𝑡3 can be 

	238 
	238 
	estimated assuming a constant polytropic efficiency, 𝜂𝑝, of 0.9 for the flow through the core fan 

	239 
	239 
	and compressor: 

	TR
	𝛾−1⁄𝛾𝜂𝑝 𝑃𝑡3𝑇𝑡3 = 𝑇𝑡2 ( )𝑃𝑡2 
	Eq 9 

	240 
	240 
	where 𝑇𝑡2 and 𝑃𝑡2 are the total temperature and pressure at inlet to the gas turbine and 𝛾 is the 

	241 
	241 
	heat capacity ratio of air (taken to be 1.4). Using these relationships, we can find the BC mass 

	242 
	242 
	concentration at the combustor exit and subsequently conduct a linear regression on the 

	243 
	243 
	logarithm of Eq 5. The regression was conducted using the Statsmodel package in Python (45), 
	logarithm of Eq 5. The regression was conducted using the Statsmodel package in Python (45), 


	244 
	244 
	which also estimate the confidence and prediction intervals. When conducting the regression, we 

	245 
	245 
	discard the same data points that were discarded in the regression conducted for system loss 

	246 
	246 
	corrections. 


	247 
	247 
	247 
	Estimating global LTO BC emissions: LTO BC emissions for commercial, passenger aviation 

	248 
	248 
	activity in 2005 and 2015 can be estimated directly from the number of aircraft operations and the 

	249 
	249 
	type of aircraft for each origin-destination pair. The Official Airline Guide (OAG) supplies 

	250 
	250 
	schedule data with information on airport pairs that includes both sets of information for a full 

	251 
	251 
	year. Matching the aircraft to an engine allows us to estimate SN and fuel flow rates by identifying 

	252 
	252 
	the engine in the ICAO engine emissions database (46). This can be used with the ICAO LTO 

	253 
	253 
	cycle (32), reflective of aircraft operations up to 915 m above ground level, and the correlations 

	254 
	254 
	and 𝐸𝐼𝑁(𝐵𝐶) developed in this paper to calculate the exit-plane mass and for 𝐸𝐼𝑚(𝐵𝐶), 𝑘𝑠𝑙𝑚 

	255 
	255 
	number of BC emissions for a specified aircraft engine. Further details on the OAG data and 

	256 
	256 
	aircraft-engine pairs can be found in Stettler et al. (24). 

	257 
	257 
	Propagating uncertainties: For all the correlations that have been conducted, we include 

	258 
	258 
	confidence and prediction intervals. Confidence intervals provide the range between which the 

	259 
	259 
	true regression line is expected to be found with probability (1 − 𝛼𝑐). This informs us on the 

	260 
	260 
	uncertainty in estimating the mean results. Prediction intervals provides the range between which 

	261 
	261 
	an individual observation may lie with probability (1 − 𝛼𝑝). This interval includes the uncertainty 

	262 
	262 
	in the mean result, as in confidence intervals, as well as the scatter in the underlying data, leading 

	263 
	263 
	to a wider interval. These two intervals encompass the uncertainties inherent in all of the methods. 

	264 
	264 
	For example, in the SN to 𝐶𝐵𝐶,𝑖 correlation, the uncertainty increases as the SN decreases. For 

	265 
	265 
	differences between measurement systems and their setup and calibration can lead to𝑘𝑠𝑙𝑚, 

	266 
	266 
	variations in the mass system loss correction. Finally, the GMD to 𝐶𝐵𝐶,𝑐 correlation relies on 

	267 
	267 
	assumptions on the effective soot density and GSD. Given sufficient data, all of these uncertainties 

	268 
	268 
	as well as the underlying measurement uncertainties will be reflected in the variation of the 


	269 
	269 
	269 
	measurements around the best fit line. In turn, this variability is accounted for in the confidence 

	270 
	270 
	and prediction intervals. 

	271 
	271 
	The confidence intervals can be used to estimate the uncertainty in the global LTO BC estimates. 

	272 
	272 
	We apply the lower and upper confidence intervals for each correlation to get a lower and upper 

	273 
	273 
	estimate of the uncertainty in the global LTO BC estimates. The prediction intervals can be used 

	274 
	274 
	to estimate the uncertainty in individual predictions of 𝐸𝐼𝑚,𝑖(𝐵𝐶), 𝐸𝐼𝑚,𝑒(𝐵𝐶) and 𝐸𝐼𝑁,𝑒(𝐵𝐶), as 

	275 
	275 
	shown in SI Document A. 

	276 
	276 

	277 
	277 
	RESULTS 

	278 
	278 
	SN to 𝑪𝑩𝑪,𝒊 correlation: The two step, nonlinear least squares fit leads to the following best fit 

	279 
	279 
	relationship: 

	TR
	648.4 𝑒0.0766⋅𝑆𝑁 μg] =𝐶𝐵𝐶,𝑖 [ 31 + 𝑒−1.098⋅(𝑆𝑁−3.064)m
	Eq 10 

	280 
	280 
	This is shown by the black, solid line in Figure 1. The 95% confidence intervals in the parameters 
	This is shown by the black, solid line in Figure 1. The 95% confidence intervals in the parameters 


	281 
	281 
	are 

	TR
	3𝑘1 = 648.4 ± 44.9 μg/m

	TR
	𝑘2 = 0.0766 ± 0.0038 

	TR
	Eq 11 

	TR
	𝑘3 = −1.098 ± 0.120 

	TR
	𝑘4 = −3.064 ± 0.277 

	282 
	282 
	The prediction intervals within which future measurements would lie with 90% probability is 

	283 
	283 
	also found using a similar two-step method. The resulting intervals are 

	TR
	Lower: 
	378.5 𝑒0.0766⋅𝑆𝑁 μg] =𝐶𝐵𝐶,𝑖 [ 31 + 𝑒−1.098⋅(𝑆𝑁−5.066)m
	Eq 12 


	Upper: μg 1146.2 𝑒
	0
	.0766⋅𝑆𝑁 
	𝐶
	𝐵𝐶,𝑖 
	[ 
	3
	] = 
	1 + 𝑒
	−1.098⋅(𝑆𝑁−1.480)

	m 
	284 These equations, along with the best fit line, are shown in  The gradients of the high 285 SN and low SN limits are equal for the lower, upper and best fit lines. However, the transition 286 point between these regions moves from 1.480 for the upper line to 5.066 for the lower line. 
	Figure 1.

	287 
	288 
	288 
	288 
	Figure 1: SCOPE11 best fit line (black) with 95% confidence intervals (red) and 90% prediction 

	289 
	289 
	intervals (blue). The unfilled orange circles represent the median values of binned dataset-1 values. 

	290 
	290 
	Figure 2 provides a comparison of the SCOPE11 correlation to the FOA3 (36) and Stettler et al. 
	Figure 2 provides a comparison of the SCOPE11 correlation to the FOA3 (36) and Stettler et al. 


	291 
	291 
	(37) correlations. The FOA3 relationship (36) was developed using a dataset similar to dataset-1, 

	292 
	292 
	where the 
	measurements 
	were 
	not 
	taken using 
	a 
	standardized 
	measurement 
	system, 
	which 

	293 
	293 
	consisted of fewer than 75 points (compared to 1406 data pairs used here), and used SN and mass 

	294 
	294 
	concentration measurements which were not taken concurrently. 
	Due to these differences, the 

	295 
	295 
	FOA3 relationship tends to predict lower 𝐶𝐵𝐶,𝑖 than the SCOPE11 correlation, except at a SN ≈ 2 

	296 
	296 
	and between 15 and 20. In addition, the FOA3 model assumes that that 𝐶𝐵𝐶,𝑖 = 0 when SN = 0, 


	297 whereas the data shows a median of 𝐶= 19.6 μg/mand a variation spanning 3 orders of 298 magnitude at SN =0. 
	𝐵𝐶,𝑖 
	3 

	299 
	300 
	300 
	300 
	Figure 2: Comparison between SCOPE11 (black), FOA3 (dashed, green line) and the Stettler et 

	301 
	301 
	al. (26) correlations (dotted, green line). 

	302 
	302 
	Stettler et al. (37) used an inverse diffusion flame to generate BC, following a standardized 

	303 
	303 
	procedure for measuring SN. However, their methods 
	to 
	measure 
	BC 
	mass 
	differ from the 

	304 
	304 
	certification-compliant system. They developed SN 
	– BC mass concentration relationships for 

	305 
	305 
	GMDs between 20 and 30 nm and for GMDs of ~60 nm, advising use of the former correlation 

	306 
	306 
	for aircraft engines. This correlation tends to predict higher mass concentrations for a wide range 

	307 
	307 
	of SN than the SCOPE11 correlation, lying outside of the range of the data found in dataset-1 for 

	308 
	308 
	SNs between ~10 and ~25. Stettler et al. (37) also use a functional form which assumes that 𝐶𝐵𝐶,𝑖 = 

	309 
	309 
	0 when SN = 0. 


	310 System loss corrections. The median relationship to estimate 𝑘from 𝐶is shown in 311 The 95% confidence intervals for each of the constants is also shown in the set of equations 312 
	𝑠𝑙𝑚 
	𝐵𝐶,𝑖 
	Eq 
	13. 
	Eq 14. 

	3.219 𝐵𝐶,𝑖𝑚𝑖𝑥
	∙ 𝐶
	(1 + 𝛽
	) + 312.5 

	𝑘= ln ( ) Eq 13 𝐵𝐶,𝑖𝑚𝑖𝑥
	𝑠𝑙𝑚 
	𝐶
	(1 + 𝛽
	) + 42.6 

	𝑎1 = 3.219 ± 0.135 
	𝑎1 = 3.219 ± 0.135 
	𝑎1 = 3.219 ± 0.135 

	3𝑎2 = 312.5 ± 119.1 μg/m
	3𝑎2 = 312.5 ± 119.1 μg/m
	Eq 14 

	3𝑎3 = 42.6 ± 19.4 μg/m
	3𝑎3 = 42.6 ± 19.4 μg/m

	313 
	313 
	The results of this fit and the associated data is shown in Figure 3. This functional form predicts 
	The results of this fit and the associated data is shown in Figure 3. This functional form predicts 


	314 
	314 
	that as 𝐶𝐵𝐶,𝑖 continues to increase, 𝑘𝑠𝑙𝑚 tends towards a constant value of ~1.169 ± 0.041. This 

	315 
	315 
	is analogous to the tendency of 𝑘𝑠𝑙𝑚 to approach a constant value as the GMD increases (39). In 

	316 
	316 
	addition, for 𝐶𝐵𝐶,𝑖 tending towards 0, we find 𝑘𝑠𝑙𝑚 = 1.99, which is a typical value for GMD ≈ 

	317 
	317 
	10 nm, the minimum size which the measurement system can reliably capture. The spread in the 

	318 
	318 
	measurement points are caused by two effects. First, there are differences between the systems 

	319 
	319 
	used by each manufacturer, permitted within the measurement guidelines. These differences can 

	320 
	320 
	include, for example, specifications of components such as the VPR, or differences in instrument 

	321 
	321 
	calibration. Second, variations in the engine exhaust temperature can change the degree of 

	322 
	322 
	thermophoretic losses that occur along sampling lines, which is estimated via an analytical form, 

	323 
	323 
	also affecting 𝑘𝑠𝑙𝑚. 


	324 
	325 
	325 
	325 
	Figure 3: Measured BC mass concentration versus 𝑘𝑠𝑙𝑚 estimated using the line loss calculator. 

	326 327 328 
	326 327 328 
	Exit plane GMD. The results of the linear least squares regression on the power law relationship between 𝐶𝐵𝐶,𝑐 (in μg/m3) and GMD is shown in Eq 15 with associated 95% confidence intervals for each constant in Eq 16. 0.185 Eq 15GMD [nm] = 5.08 𝐶𝐵𝐶,𝑐 
	Exit plane GMD. The results of the linear least squares regression on the power law relationship between 𝐶𝐵𝐶,𝑐 (in μg/m3) and GMD is shown in Eq 15 with associated 95% confidence intervals for each constant in Eq 16. 0.185 Eq 15GMD [nm] = 5.08 𝐶𝐵𝐶,𝑐 


	TR
	𝑎 = 5.08 ± 0.55 nm 𝑏 = 0.185 ± 0.015 
	Eq 16 


	329 
	329 
	329 
	The results of this fit and the associated data are shown in Figure 4. The adjusted R-squared was 
	The results of this fit and the associated data are shown in Figure 4. The adjusted R-squared was 


	330 
	330 
	found to be 0.72 and p-values < 0.001. This relationship can thus be used to estimate the 𝐸𝐼𝑁,𝑒(𝐵𝐶) 

	331 
	331 
	using Eq 4. 
	using Eq 4. 



	332 
	333 
	333 
	333 
	Figure 4: Combustor exit BC mass concentration vs GMD in logarithmic axes 

	334 
	334 
	The correlation to predict GMD is dependent on the choice of the effective soot density and 

	335 
	335 
	GSD. These are both uncertain parameters and we only use estimates of their mean value to 

	336 
	336 
	produce this correlation. While the choice of these variables is important in estimating the GMD, 

	337 
	337 
	they are not critical to estimating 𝐸𝐼𝑁,𝑒(𝐵𝐶), since the regression constants will vary according to 

	338 
	338 
	the assumed density and GSD, leading to a similar estimate in the 𝐸𝐼𝑁,𝑒(𝐵𝐶) but with a different 

	339 
	339 
	estimate for the GMD. 


	340 
	340 
	340 
	Comparison of measured and predicted EI. Using the results presented in the earlier 

	341 
	341 
	sections, we can estimate 𝐸𝐼𝑚,𝑖(𝐵𝐶), 𝐸𝐼𝑚,𝑒(𝐵𝐶) and 𝐸𝐼𝑁,𝑒(𝐵𝐶) for engines found in dataset-2, 

	342 
	342 
	beginning with the SN at each mode of operation. Figure 5 shows the comparisons for 𝐸𝐼𝑚(𝐵𝐶) 
	beginning with the SN at each mode of operation. Figure 5 shows the comparisons for 𝐸𝐼𝑚(𝐵𝐶) 


	343 
	343 
	both with (B) and without system loss corrections (A). 𝐸𝐼𝑁(𝐵𝐶) is shown with system loss 

	344 
	344 
	corrections only (C). The R2 and root mean square error (RMSE) for each mode of operation as 

	345 
	345 
	well as overall are shown in Table 1. These values show that the overall R2 is ~0.8 for all cases, 
	well as overall are shown in Table 1. These values show that the overall R2 is ~0.8 for all cases, 


	346 
	346 
	however the values for taxi operations for 𝐸𝐼𝑚,𝑖(𝐵𝐶) and 𝐸𝐼𝑚,𝑒(𝐵𝐶) tend to be lower than the 

	347 
	347 
	other modes. RMSE values vary between 62.9 mg/kg-fuel and 74.7 mg/kg-fuel for 𝐸𝐼𝑚,𝑖(𝐵𝐶) 

	348 
	348 
	and between 76.4 mg/kg-fuel and 87.6 mg/kg-fuel for 𝐸𝐼𝑚,𝑒(𝐵𝐶). Table 1 also includes the R2 
	and between 76.4 mg/kg-fuel and 87.6 mg/kg-fuel for 𝐸𝐼𝑚,𝑒(𝐵𝐶). Table 1 also includes the R2 


	349 
	349 
	and RMSE values when using the FOA3 (36) or Stettler (37) correlation in place of SCOPE11, 

	350 
	350 
	to estimate 𝐸𝐼𝑚,𝑖(𝐵𝐶). While the R2 values are all similar, our methods tends to produce a higher 

	351 
	351 
	R2 than both, except at taxi thrust. The RMSE is lower using the SCOPE11 than the FOA3 

	352 
	352 
	method for all modes except taxi by 10-15%. The RMSE using the Stettler et al. (37) correlation 

	353 
	353 
	are 168% larger than using the SCOPE11 method overall, increasing as a function of mode. 

	354 
	354 

	355 
	355 
	Table 1: R2 and RMSE values for instrument mass emissions index (𝐸𝐼𝑚,𝑖(𝐵𝐶)), exit-plane mass 

	356 
	356 
	emissions index (𝐸𝐼𝑚,𝑒(𝐵𝐶)), and exit-plane number emissions index (𝐸𝐼N,𝑒(𝐵𝐶)), separated by 

	357 
	357 
	mode of operation and overall. For the exit-plane 
	mass 
	emissions, the SCOPE11 method is 

	358 
	358 
	compared to the FOA3 (36) and Stettler et al. (37) methods. 


	Table
	TR
	𝑬𝑰𝒎,𝒊(𝑩𝑪) 
	𝑬𝑰𝒎,𝒆(𝑩𝑪) 
	𝑬𝑰𝑵,𝒆(𝑩𝑪) 

	TR
	SCOPE11 
	FOA3 (36) Stettler et al. (37) 
	SCOPE11 
	SCOPE11 

	Taxi 
	Taxi 
	R2 
	0.26 
	0.35 0.36 
	0.31 
	0.77 


	Table
	TR
	RMSE 
	65 mg/kg 
	61 mg/kg 
	102 mg/kg 
	78 mg/kg 
	3.1  1015 particles/kg 

	Approach 
	Approach 
	R2 RMSE 
	0.83 63 mg/kg 
	0.76 73 mg/kg 
	0.78 149 mg/kg 
	0.83 86 mg/kg 
	0.84 2.6  1015 particles/kg 

	Climb-out 
	Climb-out 
	R2 RMSE 
	0.83 74 mg/kg 
	0.79 84 mg/kg 
	0.81 224 mg/kg 
	0.84 86 mg/kg 
	0.89 1.8  1015 particles/kg 

	Take-off 
	Take-off 
	R2 RMSE 
	0.75 75 mg/kg 
	0.73 82 mg/kg 
	0.75 249 mg/kg 
	0.80 86 mg/kg 
	0.85 8.2  1014 particles/kg 

	Overall 
	Overall 
	R2 RMSE 
	0.79 69 mg/kg 
	0.75 75 mg/kg 
	0.76 186 mg/kg 
	0.80 82 mg/kg 
	0.82 1.6  1015 particles/kg 


	360 
	361 
	361 
	361 
	Figure 5: Parity plots of predicted versus measured results for (A) 𝐸𝐼𝑚,𝑖(𝐵𝐶), (B) 𝐸𝐼𝑚,𝑒(𝐵𝐶) and 

	362 
	362 
	(C) 𝐸𝐼N,𝑒(𝐵𝐶). The 𝑅2 in each case are 0.79, 0.80 and 0.82 respectively. 

	363 
	363 
	We have also propagated the prediction intervals from each correlation to estimate the 

	364 
	364 
	prediction intervals for mass and number emission indices, and these results can be found in SI 

	365 
	365 
	Document A. We find that the uncertainty in 𝐸𝐼𝑚,𝑖(𝐵𝐶) tends to decrease as the emissions 

	366 
	366 
	increase and the uncertainty can span almost 2 orders of magnitude at lower SN. For number 

	367 
	367 
	emissions, the uncertainty decreases slightly as emissions decrease, however in all cases is large 

	368 
	368 
	and spans 1-2 orders of magnitude. 

	369 
	369 
	Global LTO BC emissions. Estimates of annual emissions of BC due to LTO activity for 

	370 
	370 
	2005 and 2015 are presented in Table 2. Using the SCOPE11 correlation, we estimate LTO BC 
	2005 and 2015 are presented in Table 2. Using the SCOPE11 correlation, we estimate LTO BC 


	371 
	371 
	mass emissions to be 0.83 Gg/yr (95% confidence interval (CI): 0.72 – 0.95) in 2005 and 0.74 

	372 
	372 
	Gg/yr (95% CI: 0.64 – 0.84) in 2015. We also find LTO BC number emissions to be 3.23 × 1025 

	373 
	373 
	particles/yr (95% CI: 2.15 – 5.02 × 1025) and 2.85 × 1025 particles/yr (95% CI: 1.86 – 4.49 × 

	374 
	374 
	1025) in 2005 and 2015, respectively. 

	375 
	375 

	376 
	376 
	Table 2: Comparison of global LTO BC estimates. For SCOPE11-estimated BC mass and number 

	377 
	377 
	emissions, we include estimates of the 95% confidence intervals in parentheses. 


	Method 
	Method 
	Method 
	2005 
	LTO BC Mass [Gg/yr] 
	2015 
	Fleet average LTO 𝐄𝐈𝐦(𝐁𝐂) [mg/kg-fuel] 2005 2015 

	SCOPE11 FOA3 (36) 
	SCOPE11 FOA3 (36) 
	0.83 (0.72 – 0.55 
	0.95) 0.74 
	(0.64 – 0.84) 0.51 
	55 (47 – 63) 40 (35 – 46) 37 28 


	Stettler et al. (37) 
	Stettler et al. (37) 
	Stettler et al. (37) 
	1.48 1.38 
	98 75 

	TR
	LTO BC Number [× 𝟏𝟎𝟐𝟓 particles/yr] 
	Fleet average LTO 𝐄𝐈𝐍,𝐞(𝐁𝐂) [× 𝟏𝟎𝟏𝟒 particles/kg-fuel] 

	SCOPE11 
	SCOPE11 
	3.23 (2.15 – 5.02) 2.85 (1.86 – 4.49) 
	21 (14 – 33) 15 (10 – 24) 


	378 
	378 
	378 

	379 
	379 
	The difference in annual LTO BC mass emissions between methods shows a similar trend to 

	380 
	380 
	that found in Figure 1 for the correlation between SN and 𝐶𝐵𝐶. The SCOPE11 method predicts 
	that found in Figure 1 for the correlation between SN and 𝐶𝐵𝐶. The SCOPE11 method predicts 


	381 
	381 
	~31% higher BC mass emissions than FOA3 and ~86% lower than the Stettler et al. (37) 

	382 
	382 
	correlation for 2015, and the trend is similar for 2005. We also find that the fleet-average 

	383 
	383 
	EI𝑚(BC) using the SCOPE11 method is found to lie between the estimates using the other two 

	384 
	384 
	methods, with similar relative differences for each year. 

	385 
	385 
	We also note that SCOPE11-estimated mass emissions decreased by ~11% between 2005 and 

	386 
	386 
	2015. The FOA3 (36) and Stettler et al. (37) correlations also predict a decrease in mass 

	387 
	387 
	emissions of ~7% each. However, the total LTO fuel burn in 2015 was 22% higher than in 2005. 

	388 
	388 
	This corresponds to a decrease in the fleet average LTO 𝐸𝐼𝑚(𝐵𝐶) of(38) correlation between 23 

	389 
	389 
	– 27% from 2005 to 2015. We also notice a similar trend in number emissions, which decrease 

	390 
	390 
	by ~12% from 2005 to 2015, also reflecting a decrease in fleet average 𝐸𝐼𝑁(𝐵𝐶) of ~29%. 

	391 
	391 
	DISCUSSION 

	392 
	392 
	The SCOPE11 SN – 𝐶𝐵𝐶 correlation reduces the error in estimating BC emissions from aircraft 

	393 
	393 
	engines in comparison to both the FOA3 (36) and Stettler (37) correlations. This improvement 

	394 
	394 
	stems from the use of (i) a new database of simultaneously-acquired SN and BC mass 

	395 
	395 
	concentration measurements taken using certification-compliant measurement systems from a 

	396 
	396 
	representative sample of modern aircraft engines; (ii) a new functional form that better follows 

	397 
	397 
	the trends between the SN and BC mass concentration relationship at SN ≲ 5; and (iii) a more 

	398 
	398 
	complete approach to characterize the prediction uncertainty. In addition, we have extended the 

	399 
	399 
	method to predict emissions at the engine exit plane, which accounts for measurement system 

	400 
	400 
	losses. If system losses are not accounted for, LTO BC emissions may be systematically 

	401 
	401 
	underestimated by ~20%. Given the direct climate and air quality impacts of aviation BC 

	402 
	402 
	emissions, it is important to account for measurement system losses when developing emissions 

	403 
	403 
	inventories. We have also developed a method for estimating BC number emissions at the engine 

	404 
	404 
	exit plane, by assuming a lognormal size distribution and estimating the GMD from a measure of 

	405 
	405 
	the BC mass concentration at the combustor exit, and applied this to the development of an 

	406 
	406 
	inventory of LTO number emissions. To the best of our knowledge, this is the first estimate of 

	407 
	407 
	BC number emissions from global commercial aircraft LTO operations. 

	408 
	408 
	In order to quantify and propagate uncertainty, confidence and prediction intervals have been 

	409 
	409 
	determined for each correlation and are shown in the figures, with numerical values provided in 

	410 
	410 
	SI Document B. By propagating confidence intervals through the calculation, lower and upper 

	411 
	411 
	bounds on the mean global LTO BC emissions are determined. These intervals depend not only 

	412 
	412 
	on the form of the fitting equation, but also on the spread in the underlying data. This spread 

	413 
	413 
	depends on variables for which information is available and includes uncertainty in inputs and 

	414 
	414 
	constant parameters such as the SN, effective soot density and GSD that are required to apply the 

	415 
	415 
	SCOPE11 method. The latter two variables are of particular importance in the number 

	416 
	416 
	estimation. While variations in the assumed mean values affects the prediction of the GMD, this 

	417 
	417 
	has only a second-order effect on the 𝐸𝐼N,𝑒(𝐵𝐶) as the regression constants would also change if 

	418 
	418 
	different values of the effective soot density and GSD were used. The uncertainty ranges 

	419 
	419 
	calculated highlight the limited degree of correlation between SN and BC concentration at lower 

	420 
	420 
	emission levels, demonstrating the benefit of developing future emissions standards on mass 

	421 
	421 
	concentration and particle number bases and that direct measurements should be used for 

	422 
	422 
	assessment purposes where they are available. 

	423 
	423 
	While the focus of this work is on LTO operations, this work could be combined with existing 

	424 
	424 
	altitude scaling relationships (47), or used in conjunction with results of recent flight 

	425 
	425 
	measurement campaigns (48) to inform estimates of cruise-altitude BC emissions. Given the 

	426 
	426 
	infrequent opportunities to collect BC emissions data at cruise altitude, the development of 

	427 
	427 
	comprehensive, full-flight inventories of BC mass and number emissions must be based on 

	428 
	428 
	ground-level emissions estimates, such as those provided by the SCOPE11 method. Such 

	429 
	429 
	inventories are important components which enable the assessment of aviation’s environmental 

	430 
	430 
	impacts. The ability to predict the size distribution of emissions at the engine exit plane, as in the 

	431 
	431 
	method developed here, is particularly important for understanding the evolution and radiative 

	432 
	432 
	impact of contrails, and in modeling the indirect effects of BC particles on natural clouds (49), 

	433 
	433 
	both of which are among the most uncertain of aviation’s climate impacts. 
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